While there are tools available for automatically designing primers (such as the NCBI Primer BLAST) often specialized PCR applications, such as amplifying fragments for Golden Gate or Gibson assembly or using different polymerases, will necessitate specific primer placements and modifications. In these cases it is important to take extra care to ensure the primers will anneal to the template and amplify well. This page presents guidelines and tools for specifically designing primers from DNA sequences, using the Benchling platform as an example. In short, you will need to:
1) Determine where to place your primers within the template sequence to amplify your desired product
2) Adjust your primer sequences to ideal annealing temperatures
3) Modify the sequences with any necessary adapters and check for inhibitory secondary structures
Designing primers may require trade-offs and revisions to address specific issues that arise during the process. As such it's important to understand the needs of your specific experiment, such as specific locations in the genome, annealing temperatures, and adapter sequences, and keep those in mind while designing your primers.
The examples below illustrate designing primers to amplify the downstream region of the Acinetobacter baylyi ADP1 ACIAD2049 gene for use in Golden Transformation.
Figure 1 Placing a forward primer downstream of the ACIAD2049 gene.
IV. Highlight ~30 base pairs at the downstream end of the fragment you want to amplify. Create a primer as before, but select "Reverse primer" instead (Figure 2).
Figure 2 Placing a reverse primer downstream of the ACIAD2049 gene. In this example the primer is placed ~1000 bp downstream of the forward primer from Figure 1.
Note GC content can be a useful guide for choosing a good primer location, as equal base distributions (i.e. ~50% GC) are less likely to form detrimental secondary structures. However, this may not be a realistic guideline for all primers as different genomes and locations (such as near promoters) can vary considerably in GC content.
Figure 3 A) Annealing temperature calculations for ACIAD2049 downstream primers. B) ACIAD2049 downstream forward primer from Figure 1 shortened to account for annealing temperature.
Figure 4 OligoAnalyzer results showing primers with (left) and without (right) problematic secondary structures. The structures on the right would all melt in a typical PCR reaction, the first one on the left would form in a reaction with a 57°C annealing temperature.
IV. Selecting "SELF-DIMER" or "HETERO-DIMER" in OligoAnalyzer will check for other binding interactions between a primer and itself or another primer, respectively. IDT suggests that interactions with a ΔG of -9 kcal/mol or lower may interfere with PCR reactions, although this is more likely with dimers arranged such that they form primer dimers (Figure 5). If problematic dimers are detected, remove them by following the suggestions in 3.III, above.
Figure 5 Checking for self-dimerization with OligoAnalyzer. In A the self-dimer is likely to interfere with PCR reactions but the self-dimer in B is not. C) Cartoon showing the extension of each primer by PCR (dotted line) resulting in a primer dimer from the primer in A. The self-dimer in B will not be extended by PCR.
V. If you have changed one or both primer sequences you will need to recalculate your annealing temperature as above and confirm that it is still within the desired range (make sure to remove any adapter sequences before calculating your annealing temperature. Use only the sequence that anneals to the template DNA). Add or remove additional bases if necessary to bring the annealing temperature back to the desired range.
Barrick Lab > ProtocolList > PrimerDesignBenchling